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The creeping motion of liquid drops through a circular tube 
of comparable diameter : the effect of density 

differences between the fluids 

By W. L. OLBRICHTT A N D  L. G. LEAL 
Department of Chemical Engineering, California Institute of Technology, Pasadena 

(Received 2 June 1980 and in revised form 19 May 1981) 

Results of experiments on the low-Reynolds-number flow of non-neutrally buoyant 
drops through a straight circular tube are reported. The undeformed radii of the 
drops are comparable to the size of the tube, and the drops adopt an eccentric lateral 
position owing to a density difference between the drop and the suspending fluid. 
Measured values for the extra pressure difference caused by the presence of the drop, 
the relative velocity of the drop, and the shape of the drop are correlated with the 
minimum gap width between the eccentrically located drop and the tube wall using 
simple lubrication approximations. The viscosity ratio, density difference, volu- 
metric flow rate and drop size are varied in the experiment. Comparisons with pre- 
vious results for concentric, neutrally buoyant drops show that the effects of eccentric 
position can be substantial for surprisingly small values of the density difference. 
Both Newtonian and viscoelastic suspending fluids are considered, and the results 
suggest that both viscometric and time-dependent non-Newtonian effects are present. 
For the Newtonian case, the data are compared with the predictions of available 
theories which account explicitly for the eccentric drop position. 

1. Introduction 
The creeping motion of drops suspended in a tube flow is important as a prototype 

problem in many industrial and biological processes. Immiscible additives, in the 
form of small particles or drops, are often used in polymer-melt processing to  alter 
the bulk properties of the final product ; it is crucial that the kinematics and dynamics 
of the resulting two-phase flow be understood if the desired structure is to be achieved. 
The well-known analogy between the motion of large droplets through tubes and the 
creeping motion of erythrocytes through capillaries has also served as a motivation 
for many earlier studies of this problem. Although there are recent studies, e.g. 
Tozeren & Skalak (1978), that present experimental and theoretical models for 
capillary blood flow which are far more realistic than the simple system considered 
here, the sensitivity of the results to  density differences between the two phases has 
not been examined; and for this reason, the present study may still be of qualitative 
interest in the blood-flow problem. Our own motivation for the general study, of 
which this present work is a part, is the development of a realistic laboratory model 
for investigation of the microdynamics of two-phase flows in porous media (i.e. the 
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dynamics a t  the scale of the pores). This problem is of interest in tertiary oil recovery 
methods including polymeric and surfactant flooding. Here, oil droplets are displaced 
and carried by a so-called ‘pusher’ fluid through the porous matrix toward a collec- 
tion well. Much of the effort in making this process feasible has concerned an 
understanding of the dynamics a t  the scale of the whole reservoir. The present 
investigations are aimed a t  an understanding of the detailed dynamics a t  the scale 
of the individual flow channel. Specifically, we aim ultimately to  achieve a more 
fundamental grasp of the relationships between ‘dependent ’ parameters such as the 
flow resistance, drop mobility or stable drop size (i.e. drop break-up), and ‘inde- 
pendent’ parameters of the system such as fluid properties, channel geometry and 
interfacial tension. 

One system which has been proposed as a model for studying flow in porous media 
is a tube with axially varying cross-sectional area (cf. Neira & Payatakes 1979; 
Fedkiw & Newman 1977; Payatakes & Neira 1977; Deiber & Schowalter, 1979). 
Although the periodically constricted tube is a gross oversimplification of the flow- 
channel geometry in a porous medium, i t  does allow some of the effects associated 
with a rapidly varying cross-sectional area to be investigated. I n  an earlier paper, 
Ho & Leal (1975) considered the case of neutrally buoyant drops in a straight-walled 
tube for both Newtonian and viscoelastic suspending fluids. The straight-walled tube 
problem is of some intrinsic interest in its own right, and is a necessary preliminary 
to  the investigation of the wavy-walled tube flow. Here, we consider the effect, of 
differences in density between the drops and the suspending fluid, again for creeping 
motion through a straight, circular, horizontal tube. I n  an accompanying paper 
(Olbricht & Leal 1981), the effects of flow-channel geometry will be investigated. 

I n  the present experiments we measure : the incremental pressure difference AP+ 
required to maintain a specified flow rate relative to that required for the suspending 
fluid alone; the velocity U of the drops relative to the average velocity of the two-phase 
flow V ;  the shapes of the drops; and the minimum gap width h between the lower 
surface of the drops and the tube wall. I n  the context of two-phase flow through 
porous media, A P f  is related to the accessibility of individual channels to flow com- 
pared to  channels which contain no drops (i.e. the microscale ‘sweep eficiency’), 
U is a measure of the drop mobility, and the shape is important as a precursor to 
dispersion (break-up) processes. The major focus of the present experiments is the 
effect of the lateral position of the drop in the horizontal tube as a consequence of 
density differences between the two fluids. 

The present study is focused on a determination of the sensitivity of A P f ,  U and 
drop shape to small density differences between the two phases, and a delineation of 
the domain where non-neutral buoyancy is a significant factor. The relevant inde-  
pendent dimensionless parameters for the experiment include : A, the undeformed 
drop radius relative to the radius of the tube R,; CT, the ratio of the drop fluid 
viscosity ,ut to that  of the suspending fluid pa; a deformation parameter which is the 
inverse of the so-called capillary number I’ = p,,V/y, where y is the interfacial 
tension between the drop and suspending fluid; and Ap/p,,  where A p  is the difference 
between the specific gravity of the drop fluid pi and that of the suspending fluid po. 
I n  the case of a viscoelastic suspending fluid, the results will also depend on the 
dimensionless parameters which characterize the rheological properties of the fluid. 
Foremost among these is the Deborah number De = 817, where 8 is the intrinsic 
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relaxation time for the fluid (6 = 0 in a Newtonian fluid) and r is a time scale for 
the variation of the deformation rate. In  the experimental data which are presented 
in $ 3, the additional pressure drop AP+ is scaled by the characteristic viscous pressure 

Existing theories for the moLion of particles through tubes are largely concerned 
with Newtonian suspending fluids. The effect of an eccentric position of the drop has 
been considered in only two previous studies. Hetsroni, Haber & Wacholder (1970) 
used the method of reflections to solve for the velocity fields associated with t,he 
motion of a small, spherical (undeformed) drop which is not too near a wall in a 
Poiseuille flow. The lateral position of the drop is specified, in dimensionless terms, 
by p = b/Ro, where b is the distance between the centre line of the tube and the 
centre of the undeformed drop. The relative velocity of the drop for this case is 
predicted to be 

Po V P O .  

- 
4a - 2( 1 - p) - - ~2 + o(~3). 

U 
V 3 a +  2 
_ -  

Brenner (1973) used the reciprocal theorem for creeping flow to obtain the additional 
pressure drop for this flow: 

Later, Bungay & Brenner (1 973a) also obtained results for a small rigid sphere near 
the tube wall. It will be noted that (1) and ( 2 )  contain the lateral position of the drop 
explicitly through p. Unfortunately, though /3 depends mainly on the density differ- 
ence, A p / p o  in the present experiments, its value has not been predicted in any of 
the existing theoretical developments. Thus, quantitative comparisons between the 
data for U and APf and the predictions from (1) and ( Z ) ,  respectively, can be made 
only by estimating the value of p directly from photographs of the drops in the flow. 

Some theoretical work has also been done for particles which are of a size similar 
to  that of the tube, but only for neutrally buoyant, concentrically located particles. 
Hyman & Skalak (1972a, b )  calculated AP+ and U for deformable and non-deform- 
able liquid drops, while Bungay & Brenner (19733) considered the case of close- 
fitting rigid spheres. Lighthill (1968) and Fitz-Gerald (1969) also studied the motion 
of a large elastic particle, but evaluation of AP+ is difficult from their results, and the 
calculation was subsequently improved, for the axisymmetric case, by Tozeren & 
Skalak (1978). As noted above, no theoretical work has so far been done which con- 
siders large eccentrically positioned particles. 

Finally, we mention briefly earlier experimental investigations which are related 
to  the present work. These include Hochmuth, Marple & Sutera (1970), Sutera et al. 
(1970), Seshardi et aZ. (1970), and Hochmuth & Sutera (1970), and involve the motions 
of erythrocytes, model cells, and spherical caps in Newtonian fluids through capillary 
tubes. Prothero & Burton (1961, 1962) studied qualitatively the motion of gas 
bubbles in a Newtonian liquid, once again as a model for blood flow. Goldsmith & 
Mason (1963) reported U and h for very large drops ( A  $ 1) in creeping flow. How- 
ever, none of these experimental studies includes the effects of non-neutral buoyancy. 

The case of a viscoelastic suspending fluid has received scant attention in the 
literature, apart from the paper by Ho & Leal (1975) cited earlier. Indeed, the only 
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FIGURE 1. Schematic diagram of the apparatus (not to scale). (1) Constant-temperature bath. 
(2) Micrometer syringe. (3) Suspending-fluid storage section. (4) Test section. (5) Pressure port. 
(6) Pressure port. (7)  Camera. (8) Manometer by-pass valve. (9) Pressure transducer. (10) Trans- 
ducer indicator. (1 1) Thermocouple. (12) Pump: syringe or gear type. (13) Waste storage. 
(14) Suspending-fluid reservoir. 

other work which is a t  all relevant to  the present paper is that of Sigli & Coutanceau 
(1977), who measured the drag on rigid spheres falling through a cylindrical tube, 
when the particle and tube are of comparable diameter. The data show significant 
qualitative effects of fluid viscoelasticity when the interaction between the particle 
and the tube wall is important, even though the nominal Deborah number is small. 

2. Experimental apparatus and materials 
The apparatus used in this experiment is similar to the one used in Ho & Leal 

(1975) and is illustrated in figure I .  The flow was driven by one of two available 
pumps capable of maintaining a constant flow rate with less than O.i')'o variation 
over the course of a single experimental run. For the Newtonian suspending fluid, a 
Harvard Apparatus infusion/withdrawal syringe pump was used, while a Zenith 
Products Series BPB gem pump was employed with the more 'viscous' viscoelastic 
suspending fluid. 

The suspending fluid was held in an overhead reservoir before entering the pump. 
Fluidwas then pumped into a large storage section which was immersed in a constant- 
temperature bath maintained a t  25 +_ 0.1 "C. The transit time through this storage 
section was always sufficiently long to ensure that the temperature of the suspending 
fluid had equilibrated with the bath before entering the test section. The test section 
consisted of a horizontal precision-bore glass tube with a diameter of I cm and a 
length of 120 cm. Pressure ports were positioned 50 cm apart, the first port being 
50 cm downstream from the entrance to  the test section. After passing through the 
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FIGURE 2. Schematic diagram of manometer-transducer system (not to scale). ( A )  Test section. 
( B )  Upstream manometer leg. (C) Downstream manometer leg. ( D )  By-pass valve. ( E )  Pressure 
transducer. ( P )  Transducer indicator and recorder. ( G )  Suspending fluid. ( H )  Carbon tetra- 
chloride. ( I )  Pressure difference due t o  suspending fluid alone. 

test section, the fluid left the controlled-temperature region and was held in a 
storage container. 

The drops were manually injected upstream of the test section using a Hamilton 
precision micrometer syringe capable of producing drops of known volume to within 
0.001 ml. The micrometer syringe was connected to a flexible tube fitted a t  its end 
with a 15-gauge hypodermic needle. The needle was inserted directly into the flow 
through a fitking containing a rubber septum. The drops were injected with the pump 
operating a t  a low speed so tha t  they would detach from the needle shortly after 
injection. Once all the drops for a particular run had been injected, the pump was 
adjusted to the full desired flow rate. It was found that the drops attained an equi- 
librium position in the tube well before entering the region between the pressure 
ports. The equilibrium position was found to depend on all the material and flow 
parameters, but most strongly on the density difference between the drop and 
suspending fluid. Furthermore, the equilibrium position was completely independent 
of the initial lateral position of injection. 

The pressure ports were connected to  a differential manometer/transducer system 
capable of detecting changes in the pressure difference down to approximately in. 
of water. This level of sensitivity is important because the extra pressure difference 
due to the presence of a drop in the flow can sometimes be exceedingly small. The 



192 W .  L. Olbricht and L. G. Leal 

manometer/transducer system is shown schematically in figure 2. Since the total 
fall in pressure between the pressure ports was much larger than the full-scale 
sensitivity of the transducer (a Validyne Engineering Co. Model DP45 with a full- 
scale range of only 0.5 in. of water), the manometer was used to balance the (major) 
portion of the fall in pressure due to the flow of the suspending fluid alone. The trans- 
ducer then detected only the relatively small changes in the pressure difference due 
to the presence of the drop (or drops) in the test section. The details of this procedure 
were outlined in Ho & Leal (1975). 

The velocity of a drop was also independent of spacing when the drops were 
separated by a t  least one tube diameter and was measured by determining visually 
the time for transit between known points in the tube. The volumetric flow rate Q 
was determined by collecting a measured volume of fluid from the outlet of the test 
section over a measured time interval. Photographs were taken while the drops were 
in the test section between the pressure taps using a 35 mm Pentax camera fitted 
with a close-up lens. The refractive index of the fluid in the constant-temperature 
circulating bath was matched with the refractive index of the suspending fluid in the 
manner outlined in Ho & Leal, and this minimized distortion in the photographs due 
to  the curved surface of the tube. 

The Newtonian suspending fluid was 95.75% (w/w) glycerine in water. The 
density of the solution, measured with a hydrometer, was found to  be 1.251 & 
0.001 g/cm3 during the course of the experiment. The viscosity was also monitored 
during the runs, but was always found to be 4.17 0.02 P. The slight variation is due 
primarily to 0.1 "C variations in temperature in the circulating water bath. 

The viscoelastic suspending fluid was a 0-5 % w/w aqueous solution of Dow 
Separan AP30, a polydisperse polyacrylamide with rheological properties that  have 
been extensively studied (Leal, Skoog & Acrivos 1971 ; Huppler et al. 1967a, b ) .  
One difficulty in comparing experimental results for the Newtonian and viscoelastic 
suspending fluids is to determine an appropriate viscosity for the Separan solutions 
since these show a strong shear-thinning effect. However, we follow the precedent 
of Ho & Leal (1975) and simply evaluate the viscosity a t  the wall-shear rate for the 
undisturbed flow using a power-law model (n = 0-45) to  estimate the shear-thinning 
behaviour of the fluid. The resulting values of the suspending fluid viscosity a t  the 
flow rates for the present experiment can be determined from table 1. Unfortunately, 
the viscoelastic fluid viscosity was found to  vary significantly from batch to batch 
of the Separan solution. Although care was taken t'o prepare each batch of suspending 
fluid in an identical manner, variations in the fluid viscosity up to 10 yo appeared to 
be unavoidable. 

In  addition to  a shear-thinning viscosity and normal-stress differences in simple 
shear flow, dilute polymer solutions exhibit a finite response time in unsteady 
(Lagrangian or Eulerian) flow. This characteristic time is associated with the fluid's 
adjust,ment a t  the macromolecular level to  a change in the bulk deformation 
gradient. When the fluid time scale is comparable to the characteristic time scale of 
a flow, the response of the system may be governed, a t  least in part, by the relative 
magnitude of these time scales, i.e. De = O / T .  

As far as the present experiment is concerned, if the suspended drop were 
sufficiently small, it would move with the local fluid velocity, and hence the flow 
would be steady everywhere. Furthermore, the flow field a t  any point would be 
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Drop volume (cm3) 
0.070 
0.100 
0.150 
0.200 
0.250 
0.300 

h 
0.512 
0.576 
0.660 
0.726 
0.782 
0.831 

Volumetric flow rate 
(cm3/min) v (cm/s) 

15-0 0.32 
26.4 0.56 
37.7 0.80 

TABLE 2. Flow parameters 

nearly simple shear flow, and consequently the non-Newtonian properties could be 
described completely by variations in the viscosity and the normal stresses in a visco- 
metric flow. However, the drop is not asymptotically small in the present experi- 
ments and thus travels at a velocity which differs from the local suspending-fluid 
velocity. As a result, fluid elements experience a local acceleration as they move 
around the drop. This unsteadiness is a possible source of time-dependent non- 
Newtonian effects. The importance of such effects can be measured by De. The appro- 
priate timescale for the flow is approximately 2DhRo/( U-V) ,  where the difference in 
velocity between the drop and the surrounding suspending fluids is estimated to  be 
1J-V, and 2DhR0 is the ‘length’ of the deformed drop (see 3 3).  The characteristic 
time for the fluid can be estimated from steady-shear-flow data, employing a consti- 
tutive model to relate 0 t o  normal-stress measurements. We have used the contra- 
variant form of the convected Maxwell model for this purpose, and 8 has been 
evaluated a t  the wall-shear rate. Our estimates show that the maximum value of 
De under the conditions of the present experiment is approximately 0.20. Most pre- 
vious experimental evidence suggests that  time-dependent non-Newtonian effects 
are only significant when De 2 1-2. Thus, we expect to be able to interpret the 
experimental results reported here largely in terms of steady flow behaviour for the 
fluid. 

The drops consisted of solutions of Dow Corning silicone oil mixed with carbon 
tetrachloride. The values of cr = p t /po  and r = ,uoV/y for the systems used are 
listed in table 1. The density differences employed in this study were small, never 
exceeding 0.04 g/cm3. Nevertheless, the changes induced over this range of A p  are 
both qualitatively and quantitatively significant. Indeed, this range is apparently 
sufficient t o  expose the asymptotic behaviour for ‘large’ values of Ap in such quant- 
ities as AP+Ro/poV or U / V .  These are important findings, since density differences 
of this magnitude are likely to  be common in many systems of interest, in spite of 
the fact that  no account has been taken of them in the majority of existing theoretical 
studies. The analysis of Hyman & Skalak (1972b), mentioned in 3 1, provides a good 
example. Calculations were made for LIP+ and U for liquid drops taken as a model of 
erythrocytes in capillaries. It was assumed that the drops were neutrally buoyant 
and concentrically located, even though the authors point out that  the density of 
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System 
7 -- f----- 

h 2 3  

0.512 1.99 1.48 
1.41 1.38 

0,577 2.22 1.48 
1.49 1.49 

0.660 2.89 1.68 
1.49 1.46 

0.726 4.10 2.88 
1.43 1.40 

0.782 4.68 3.12 
1.41 1.37 

0.831 6.06 4.19 
1.37 1.32 

0.512 1.49 0.97 
1.54 1.61 

0.577 2.18 1.03 
1.57 1.62 

0.660 2.38 1.46 
1.56 1.58 

0.726 3.37 2.10 
1.55 1.51 

0.782 4.19 2.72 
1.47 1.47 

0.831 4.84 3-72 
1.44 1.44 

0,512 1.15 0.67 
1.60 1.63 

0.577 1.55 0.86 
1.59 1.66 

0.660 2.09 0.93 
1.58 1.58 

0.726 3.22 1.68 
1.53 1.54 

0.782 3.92 1.45 
1.47 1.50 

0.831 4.42 1.87 
1.44 1.48 

4 5 6 2V 3V 4V 
( V  = 0.32 cm/s) 

0.06 1.01 1.99 0.70 0.79 0.47 
1.71 1.37 1.20 1.44 1.44 1.45 
0.94 1.82 3.22 0.93 0.86 0.82 
1.66 1.41 1.29 1.39 1.43 1.41 
1.12 1.62 3.54 1.23 1.23 1.23 
1.58 1.44 1.34 1.34 1.40 1.38 
1.13 1.60 4.68 1.75 1.56 1.82 
1.52 1.43 1.36 1.32 1.36 1.34 
1.25 2.26 5.20 2.10 1.93 2-45 
1.47 1.41 1.34 1.30 1.34 1.30 
1.96 2.14 6.24 2.80 2.62 3.20 
1.42 1.38 1.33 1.28 1.31 1.27 

( V  = 0.56 cm/s) 
0.00 0.71 1.56 0.44 0.40 0.30 
1.77 1-49 1.36 1.46 1.50 1-47 
0.23 0.65 2.20 0.56 0.56 0.53 
1.73 1.53 1.40 1.43 1.46 1.45 
0-25 0.68 2.49 1.00 0.89 0.87 
1.68 1.54 1.42 1.41 1.42 1.41 
0.39 0.89 2.97 1.36 1.28 1.53 
1.60 1.50 1.40 1.37 1.38 1.38 
0-32 0.89 3.79 1.95 1.78 1.97 
1.54 1-49 1.39 1-34 1.34 1.34 
0.13 0.97 4.09 2.62 2.44 2.51 
1.50 1.46 1.36 1.32 1.32 1.30 

( V  = 0.80 cm/s) 
0.07 0.45 0.89 0.34 0.31 0.31 
1.79 1.57 1.43 1.49 1.50 1.51 
0.17 0.54 2.08 0.62 0.42 0.41 
1.75 1.57 1.47 1.46 1.47 1.47 
0.11 0.52 2.43 1.05 0.74 0.66 
1.68 1.56 1.47 1.41 1.43 1.42 

-0.10 0.65 2.50 1.40 1.10 0.69 
1.65 1.55 1.47 1.37 1.41 1.38 

-0.22 0.69 3.72 2.26 1.56 1.15 
1.59 1.51 1.44 1.34 1.36 1.34 

-0.50 0.50 3'83 2.56 1.90 1.95 
1.56 1.49 1.42 1.29 1.35 1.32 

5V 6V 7V 8V 9V 

0.90 0.34 0.28 0.20 0.17 
1.40 1.50 1.52 1.50 1.50 
1.12 0.41 0.46 0.42 0.41 
1.38 1.46 1.48 1.46 1.47 
1-35 0.93 0.91 0.78 0.78 
1.36 1.40 1.42 1.41 1.41 
1.89 1.42 1.79 1.37 1-35 
1.34 1.36 1-37 1-36 1-35 
2.50 2.51 2-39 1-98 2.12 
1.30 1.31 1.32 1.32 1.32 
2.96 2.80 2-95 2.63 2.77 
1.28 1.27 1 2 9  1.28 1.27 

0.43 0.19 0.22 0.19 0.15 
1.47 1.50 1.50 1.50 1.51 
0.64 0.32 0.34 0.37 0.27 
1.44 1.47 1.47 1.47 1.47 
1.02 0.71 0.71 0.68 0.65 
1.40 1.41 1-42 1.42 1.42 
1-46 1.16 1.12 1-05 1-10 
1.36 1-37 1.38 1.38 1.37 
2.00 1.81 1.79 1.62 1.67 
1.32 1.33 1.34 1.33 1.33 
2.93 2.57 2.35 2.00 2.31 
1.30 1.30 1.30 1.31 1.30 

0.33 0.17 0.18 
1.49 1.50 1.50 
0.40 0.25 0.35 
1.46 1.47 1.47 
0.74 0.59 0.66 
1.43 1.42 1.43 
1.16 0.93 1.01 
1.38 1.37 1.40 
1.70 1.49 1.55 
1,34 1.34 1.35 
2.13 2.31 2.06 
1.31 1.31 1.32 

0.18 0.19 
1.50 1.51 
0.30 0.27 
1.47 1.47 
0.58 0.65 
1.43 1.44 
0.95 1.08 
1.38 1.39 
1.32 1.54 
1.36 1.35 
1-51 2.06 
1.35 1.32 

TABLE 3. Data for AP+ and U / V .  For each system, drop size and flow rate there are a pair of 
numbers. The upper is the measured value for AP+R,/p,,V and the lower is the measured 
value for U / V .  

erythrocytes differs from that of the suspending plasma by 0.07 g/cm3. The neglect 
of even relatively small density differences may turn out to be a significant short- 
coming of this and similar calculations. 

The dimensionless parameter r characterizes the relative magnitude of viscous 
stresses as compared to interfacial tension forces a t  the drop surface, and is the 
inverse of what is often called the capillary number. This parameter was varied in 
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the present experiments through variations in the flow rate V .  The interfacial tension 
y was measured using a duNuoy ring tensiometer. The measured values are 22 dyn/ 
cm and 26 dyn/cm for silicone oil drops with the Newtonian and viecoelastic suspend- 
ing fluids, respectively. 

The flow parameters, namely the size of the drops and the flow rates used in this 
experiment) are listed in Table 2 .  

3. Experimental results 
Measurements of AP+,  U ,  shape, and distance from the wall h have been made for 

the thirteen systems listed in table 1. The material properties of each system, namely 
the drop viscosity and density, were chosen so that comparisons between them would 
reveal the effects of the individual variables on the dependent quantities, such as 
A P f  or U ,  Furthermore, comparisons between selected Newtonian and viscoelastic 
suspending fluid systems reveal the qualitative effects of viscoelasticity on the 
measured quantities. Finally, comparison with the corresponding results of Ho & 
Leal (1975) for neutrally buoyant drops provides a further indication of the effects 
of density differences between the two fluids. Measurements were made for each 
system for three flow rates (0.3 < V 6 0.8 cm/s) and for six drop sizes (0.5 6 h 
f 0.8). Thus, two material properties, u and Ap,  and two ‘flow parameters’) V and A ,  
have been independently varied. The main results are presented in four parts, 
organized according to  the specific property which is being varied, rather than the 
quantity being measured. This scheme of presentation facilitates discussion of the 
results, since the variation of a single experimental parameter often affects more 
than one measured quantity. Mechanistic explanations for the results are proposed 
whenever possible, and the ranges of their validity over the parameter space are 
estimated. In  addition, the data are compared in 0 5 to the small-h theories of Brenner 
(1973) for AP+ and Hetsroni et al. (1970) for U ,  which account explicitly for 
the eccentricity of the drop’s position in the tube. 

The data for AP+Ro/poV and U / V  for each size drop and each flow rate are 
tabulated in table 3. In  an attempt to characterize the degree of drop deformation, 
a parameter D was defined as the maximum linear dimension of the drop (as measured 
from photographs) rendered dimensionless by the undeformed drop diameter 2hR,,. 
Clearly, the parameter D is insufficient to  describe the detailed shapes assumed by 
the drops during flow, since the drops exhibit neither fore/aft symmetry, nor axi- 
symmetry when Ap + 0. Nevertheless, measurements of D will be useful for the 
purpose of comparison between various systems. Representative data for D and 
the minimum gap width h between the lower surface of the drop and the tube wall 
will be presented later in this section. A complete accounting of numerical values for 
D and h is given by Olbricht (1980). 

Let us now turn to  a detailed examination of the data. In this section, we focus 
simply on the dependence of such variables as A€’+, U / V  and D on the independent 
parameters, I?, u, h and Ap/po .  The results are then discussed in $4 with the objective 
of obtaining a qualitative understanding of the underlying physical mechanisms. 
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FIGURE 3. Dimensionless extra pressure diff'crence and relative velocity as functions of F ( = uoV/y). 
0, System 6 (Newtonian): cr = 2.68, Ap/po = 0.037, h = 0.726. 0 ,  System 6 (Newtonian): 
cr = 2.68, Ap/po = 0.037, h = 0.576. 0, System 2V (viscoelastic): CT = 3.1-.51, Ap/po = 0.039, 
h = 0.726. A, System 2V (viscoelastic): CT = 3.1-5.1, Ap/po = 0.039, h = 0.576. x ,  (New- 
tonian): u = 2.04, Ap/po = 0, A = 0.726 (fromHo & Leal 1975). 0 ,  (viscoelastic): fl = 3.1-5.1, 
Ap/po = 0, h = 0.726 (from Ho & Leal 1975). 

3.1. Average velocity 

Let us first consider effectsof the bulk flow rate or, equivalently, the average velocity 
V for fixed values of A, (T, and Ap/po. A dimensional analysis of the problem for 
Re (=  p,RoV/,uo) < 1 shows that the primary effects of the bulk velocity in the case 
of a Newtonian suspending fluid should be manifested through variations in the 
parameter I' = p0V/y.  I n  the case of a viscoelastic suspending fluid, the rheological 
properties also depend upon the magnitude (and form) of the velocity gradient tensor 
and this provides the potential for additional dependence on V .  The effects of V on 
AP+Ro/poV and on U / V  for both Newtonian and viscoelastic fluid systems are 
illustrated in figure 3, where AP+R,/poV and U / V  are plotted as functions of I? 
for several systems which have approximately the same values of CT and A. The 
differences between the two non-neutrally buoyant Newtonian systems are a 
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FIGURE 4. Dimensionless extra pressure difference as afunction of A. Shown are Newtonian systems 
2, 3, 5 ,  6 and all viscoelastic systems for V = 0.32 cm/s. 

consequence of the difference in drop size ( A  = 0.58 and h = 0.73, respectively), and 
this is also true of the two non-neutrally buoyant viscoelastic fluid cases. A syste- 
matic discussion of the dependence of AP+Ro/p0V and U / V  on h will be presented 
later. The effect of increasing I?, in all cases considered here, is to  cause the dimension- 
less additional pressure difference AP+R,/p, V to  decrease, and the relative mobility of 
the drop U / V  to increase. I n  general, i t  appears that  AP+Ro/p0V approaches a 
constant asymptotic value for the highest flow rates, though this is not true of the 
mobility over the range of I? considered here. 

I n  addition, we may note that increases in r also led to increases in the drop deforma- 
tion D and in the gap width h, for both Newtonian and viscoelastic suspending fluids. 

All of these effects of increased average velocity are slightly more dramatic for 
larger drops. Furthermore, the identical qualitative trends are observed for both 
neutrally buoyant and non-neutrally buoyant drops, indicating that drop eccentri- 
city is not an important factor with regard to flow-rate variations. 

3.2. Drop size 

The effects of drop size were studied for each system by taking measurements for 
six different sizes, 0-51 6 h < 0.83. The larger sizes are directly comparable to those 
chosen in Ho & Leal (1975) for neutrally buoyant drops. Although it is impossible to 
illustrate all of the data, figure 4 provides an indication of the dependence of hP+ 
on h for systems with Apj’p, 2 0.04. Let us now consider these results in detail, 
beginning with the Newtonian suspending fluid systems. 

Newtonian suspending fluid. The dependence of the additional pressure difference 
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AP+ on the size of the drop is not qualitatively changed by variations in eccentricity 
(i.e. Ap/po)  for a Newtonian suspending fluid. Thus, although the majority of New- 
tonian systems in table 3 show a monotonic increase in AP+R,/,uoV with drop size, 
the previous work on neutrally buoyant drops shows clearly that this behaviour 
depends upon the value ofg.  In  particular, for u small enough and h large enough, 
the ext,ra pressure difference must decrease with increased drop size, for the simple 
reason that fluid of higher viscosity is being replaced by fluid of lower viscosity. The 
fact that AP+R,/p, V increases with drop size in all cases shown in figure 4 is a con- 
sequence of the fact that the minimum value of a was only 0.3, and the maximum 
in h was 0.83. Indeed, the system 4 (see table 3) illustrates a partial transition to  the 
small-cr, large-h behaviour noted in Ho & Leal (1975). This system has the lowest 
viscosity ratio (a = 0.30) of those studied here, and the additional pressure difference 
first increases with h in this particular system, achieves a maximum around h N 0.6 
(for V = 0.80 cm/s), and then decreases as the size of the drop is made larger. The 
important inference is that simple fluid replacement must eventually establish the 
large-h behaviour for:AP+ regardless of the additional mechanisms that are significant 
for smaller drop sizes. The magnitude of AP-i- will then depend mainly on the value 
of a. Further support for this view comes from the fact that  AP+ increases with h a t  
a rate which, for the largest values of A, appears to be independent of the drop 
eccentricity, as would in fact be expected when the dominant mechanism is simple 
fluid replacement. 

I n  contrast to the effect on AP+, the qualitative dependence of the relative velocity 
of the drop on drop size does depend on the eccentricity of the drop for Newtonian 
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FIGURE 6. Difference between U / V  for Newtonian and viscoelastic suspending fluids as a 
function of drop size. 0 ,  U / V  (system 2) - U/V (system BV), V = 0.56 cm/s; m, U / V  
(system 2) - U / V  (system 6V), 1’ = 0.32 cm/s; A, U / V  (system 6) - U / V  (system 2V) 
V = 0.56 cni/s; 0, U / V  (system 6) - U/V (system 2V), T i  = 0.32 cm/s. 

suspending fluids. It was shown in Ho & Leal (1975) that the velocity ratio U /  V for 
a neutrally buoyant drop decreases monotonically with increasing h until a constant 
limiting value is attained around h N 0.9. The least non-neutrally buoyant drops 
studied here, system 4 (Ap/p, = 0-Oll), also show a monotonic decrease in U / V  up 
to h = 0.83, which was the largest value covered in this study. However, for the 
other non-neutrally buoyant systems ( A p / p ,  = 0.02, 0.04), U /  V first increases with 
A,  attains a maximum around h N 0.6-0-7, and then decreases monotonically with 
further increase in A. 

Finally, it can be seen from figure 5 that the drop undergoes larger shape deforma- 
tions in Newtonian systems a s  its size (i.e. A) is increased. In contrast to this, the 
relative degree of deformation in an unbounded creeping flow would be independent 
of the drop size. However, in the present case, the drop is deformed, in part, due to 
the presence of the walls, and it is this effect which is responsible for the observed 
increase in deformation with larger A. 



Creeping motion of liquid drops through a tu3e 201 

0 

A 

A 

0 

+ 
e 

I -a P------ -------- ------- 

I I I I 

1 2 3 4 
Ll 

FIGURE 7. Dimensionless extra pressure difference and relative velocity of drop as functions of 
viscosity ratio for V = 0.56 cm/s, Ap/po  = 0.04. Newtonian systems 5 and 6 :  A, h = 0.576; 
0, 0.726. Viscoelastic systems 2V-3V: A, h = 0.576; 0 ,  0.726. 

Viscoelastic suspending JEuid. The qualitative dependence of AP+ on h for visco- 
ela.stic suspending fluids is clearly similar (see figure 4) to its dependence for the 
Newtonian systems - namely, an increase in AP+ is observed with any increase in A .  
What is different, however, is the fact that both the rate of increase and the actual 
non-dimensionalized values of AP+Ro/,uo V are apparently independent of all the 
material parameters in the viscoelastic case, including B (cf. figure 4). Furthermore, 
no maximum or asymptotic limit is observed for AP+Ro/poV over the size range 
covered. 

Another contrast between Newtonian and viscoelastic suspending fluids is the 
absence of a maximum in U / V  as a function of A (table 3 )  for any Aplp, that we 
considered. Instead, U /  V only decreases monotonically with increasing drop size at  
a rate which again seems to be independent of other material parameters, including u. 
The relative mobility of drops in visoaelastic and Newtonian systems depends on 
drop size. A comparison between various Newtonian and viscoelastic systems shows 
that U / V  is often larger in the viscoelastic systems for small drops, but is always 
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smaller for large drops in the size range covered here. Typical curves for the difleerence 
between U /  V for the Newtonian systems and U /  V for a corresponding viscoelastic 
system (same Ap/po, u) are shown in figure 6 as a function of A. 

3.3. Drop viscosity 

The effect of drop viscosity relative to the viscosity of the suspending fluid was 
studied by taking measurements for various grades of drop fluid a t  each value of 
Ap ( N  0.1 < u < N 5). The results are shown in figures 3, 5 and 7, as well as 
table 3. 

Newtonian suspending Jluid. I n  the case of Newtonian fluid systems, AP+R0/p,,V 
increases with increase of u, as can be seen from figure 7, while the drop velocity 
decreases (cf. figure 7) and the drop deformation, as measured by D,  increases very 
slightly (cf. figure 5 ) .  The drop viscosity does not, however, affect the gap width 
between the drop and the tube wall over the entire range of experimental conditions 
of this study. Although the decrease in drop velocity with increase of cr is predicted 
qualitatively by ( 1 )  for undeformed drops, the Newtonian results from table 3 show 
that the drop velocity is more sensitive to cr for more eccentric drops and this 
feature cannot be predicted by the small-A, spherical drop theory. The fact that  
drop deformation is relatively insensitive to the drop viscosity is qualitatively con- 
sistent with the results of Taylor (1932) and others for drop deformation in a simple 
shear flow of an unbounded fluid. 

Viscoelastic Jluid systems. The qualitative effects of the viscosity ratio (T are very 
different in the case of a viscoelastic suspending fluid. Firstly, figure 7 shows clearly 
that, for eccentric drops, the additional pressure difference is independent of the value 
of cr over the range of cr studied, in marked contrast to thr: Newtonian result. Secondly, 
the drop velocity is very nearly independent of cr. The gap width and drop shape are 
also essentially independent of (T, but this is the same result as for a Newtonian fluid. 
It may be noted that the additional pressure difference is positive for all cases studied, 
even for viscosity ratios as low as cr = 0.09. Furthermore, AP+R,/p,V is larger for 
viscous drops in a Newtonian suspending fluid than for the same drops in a visco- 
elastic system, if all other parameters remain unchanged. The opposite is found for 
inviscid drops. 

3.4. Density diflerence 
Finally, let us consider the effects of the eccentric position of non-neutrally 
buoyant drops. The equilibrium position of a non-neutrally buoyant drop is deter- 
mined by a balance between buoyancy forces and hydrodynamic lift generated in 
the gap between the drop and the tube wall. The value of Ap/po  ranges from zero in 
Ho & Leal (1975) to  0.04 in the present study. 

hTewtonian suspending Jluid. The dependence of AP+R,/p,V and U j V  on the 
density difference Ap/p, is illustrated in figure 8. Clearly, the additional pressure dif- 
ference increases for a Newtonian suspending fluid as a drop of fixed size is made more 
eccentric by increasing the drop density. Also, the velocity of the drop decreases, and 
the drop suffers a larger deformation. Surprisingly, the sensitivity of AP+Ro/poV to 
variations in Ap/po diminishes above Ap/po  = 0.02 for the drops with h = 0.83. In  
contrast, smaller drops show an appreciable increase in AP+R,/poV with Ap/po up 
to Ap/po  = 0-04. Small drops also show a much stronger dependence of U / V  on 
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FIGURE 8. Dimensionless pressure difference and relative velocity as functions of Ap/po. Newtonian 
systems 4 and 5 :  x , h = 0.660; 0 , 0 . 8 3 1 .  Newtonian systems 2 and 6 :  0 ,  h = 0.660; 0 , 0 . 8 3 1 .  
Viscoelastic systems 2V and 6V: m, h = 0.660; m, 0431. Viscoelastic systems 4V and 8T: A, 
h = 0.660; A, 0.831. All data for V = 0.32 cm/s. Also shown are results from Ho & Leal (1975) 
for Ap/po = 0. 

Ap/po than the corresponding large drops. However, the most significant result, is 
the extreme sensitivity of the data to Ap/p , .  

Viscoelastic suspending $uid. The same qualitative trends noted above for New- 
tonian systems were also observed for viscoelastic suspending fluids, though the effects 
are less pronounced. 

A key difference between the two cases, however, is the gap width h. For a given 
value of Ap/p,,  drops suspended in a viscoelastic fluid are much farther from the wall 
than those in a Newtonian fluid. For example, the values of h for two corresponding 
viscoelastic and Newtonian systems, with Ap/po = 0.019, are 0.32 (system GV) and 
0.12 (system 2 )  €or h = 0.62, and 0.18 (system 6V) and 0.12 (system 2 )  for h = 0.83. 

Comparison between the results obtained here and those in Ho & Leal for neutrally 
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buoyant drops shows that the effects of a given magnitude of Ap/po on the drop 
eccentricity decreases as the size of the drop is made larger. Consequently, a given 
value for Ap/po induces a relatively smaller change in the measured quantities as 
the drop is made larger. 

4. Further discussion 
4.1. Relevance of lubrication ideas 

Photographs of the non-neutrally buoyant drops in flow suggest that  the fluid-filled 
gap between the drop’s lower surface and the tube wall is a lubrication layer capable 
of producing an upuwd thrust on the drop which balances buoyancy. It is essential, 
then, that the drop is able to  deform in the flow, since a spherical drop can generate 
no hydrodynamic lift in n Newtonian fluid a t  small Reynolds number. Indeed, the 
lateral position of an undeformed neutrally buoyant drop is determined exclusively by 
its initial lateral position in the tube, provided the Reynolds number and Deborah 
number are sufficiently small that ‘lateral migration effects ’ are negligible (cf. Chan & 
Leal 1979). It is the lack of an inherently preferred radial position for a spherical 
drop which is responsible for the extreme sensitivity of the measured results to small 
variations in Ap/p,. 

For non-neutrally buoyant deformable drops, previous lubrication analyses of 
related flows may be useful. The most relevant study is by Lighthill (1968), who 
considered the motion of an elastic particle through a capillary in a Newtonian 
suspending fluid. The particle is assumed to be neutrally buoyant and close-fitting, 
but capable of deforming to  ‘ squeeze through ’ the tube. Lighthill applied classical 
lubrication theory to determine the flow field in the gap between the particle and the 
wall. The results predict that both the thickness of the lubrication layer and the 
additional pressure difference should vary proportionally to U*. 

The qualitative relevance of Lighthill’s analysis for non-neutrally buoyant viscous 
drops is tested in figure 9. Each point for the Newtonian systems actually represents 
an average value for h2 over all drop sizes for each choice of drop fluid and V ,  since 
it was previously found for Newtonian systems that there is no measurable variation 
of IL with h for sufficiently large values of Ap/po where the lubrication approximation 
is most likely to be valid. I n  the viscoelastic systems, h varies with h and in these 
cases only the values of h for the largest drops were used in figure 9. The existence of a 
linear relationship bet\$ een h2 and b-/Ap suggests that, indeed, the velocity of the par- 
ticle and gap nidth are determined by forces generated in a lubrication layer, albeit 
one which acts on only or:e ‘side ’ of the drop, since the particles in the present study 
are neither concentric nor close-fitting. The analysis of Lighthill applies to solid elastic 
particles, and the data for the Newtonian cases shown in figure 9 exhibits a slight 
dependence on the drop viscosity, especially near the origin. The ccefficient of 
proportionality for the lubrication correlation between h2 and U appears to be larger 
for smaller values of r for the Newtonian suspending fluid. Indeed, when the lubrica- 
tion analysis is modified t o  account for the fact that  the particle is a liquid drop, 
i t  can be shown that the gap thickness h remains dependent on U* (even as c + o), 
but the constant of proportionality increases by a factor of two as  u decreases from 
infinity to zero. 

The pressure generated in the lubrication layer which balances the non-neutral 
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FIGURE 9. h2 versus U l A p .  Each Newtonian point represents an  average of all drop sizes for the 
particular system and flow rate. The viscoelastic points are taken for the largest drop sizes. 
Suspending fluid : , 95.75 yo glycerine ; 0, 0.5 yo Separan. 

buoyancy of t,he drop is proportional to p,, U / h 2  for any value of u. Thus, we expect 
that the effect of an increase in the viscosity of t h e  suspending fluid will be a greater 
gap thickness for a fixed value of Ap/po. The values of h2 and hence the slopes of the 
two lines which approximate the Newtonian and viscoelastic data shown in figure 9 
should therefore be related to the viscosities of the suspending fluids. Since little or no 
variation could be discerned in the coefficient of proportionality with changes in u, 
we have approximated each set of data by a single curve. The viscosity of the 
Newtonian solution, 95.75 yo aqueous glycerin, was determined to be 4.17 P. The 
viscosity of the shear-thinning 0.5 % Separan solution depends strongly, of course, on 
the flow rate. However, for sufficiently small values of V (and U ) ,  the Viscosity is 
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just the zero-shear-rate viscosity which we have estimated from viscometric data to  
be approx. 14.5 P. Thus, the ratio of slopes in figure 9 for small values of U (i.e. near the 
origin) is expected to  be 14.5/4.17 = 3.5. This agrees well with the actual ratio of 3.1. 

It is surprising, however, that the linear relationship between U and h2 holds for 
the viscoelastic case over a wide range of flow rates. The effective viscosity of the 
suspending fluid, which can Fe deduced from table 1, decreases by as much as 50 yo 
based on the wall shear rate as the flow rate increases over the range covered in 
figure 9. We would expect, on the basis of the dependence of h2 on p0 alone, that  h2 
should decrease by as much as 50 yo from its ‘zero-shear-rate’ value owing to shear- 
thinning. Instead, there appears to be no effect of the variations in the suspending- 
fluid viscosity that are associated with increases in shear rate. We believe that the 
explanation for this involves the normal stresses which are present in the viscoelastic 
suspending fluid. The primary normal-stress difference gives rise to a hoop stress by 
creating a tension in the curved streamlines around the drop. This tension in the 
streamlines is greatest a t  the location of greatest shear rate, which is clearly in the 
gap between the particle and the tube wall. The net effect of normal-stress-induced 
hoop stresses is thus to  ‘push’ the particle away from the tube wall, toward the 
centre line. Now the magnitude of the primary normal-stress difference for 0.5% 
Separan AP-30 increases approximately as the square of the shear rate in the range 
of interest (Leal et al. 1971), while the viscosity of 0.5 yo Separan AP-30 decreases 
approximately as the square of the shear rate. Thus, as U is made larger, the poten- 
tial increase in h2 from the increased hoop thrust and the decrease in h2 which is 
caused by the decrease in suspending fluid viscosity tend to balance one another. 
An apparent consequence of this off-setting effect is that  the qualitative variation of 
h2 with U is not changed in a viscoelastic fluid from the Newtonian lubrication result. 

The lubrication analysis for a solid particle predicts also that the additional pressure 
difference AP+ should vary with Ug. This result depends crucially on the axial force 
on the lubrication surface which, in turn, depends on the shear stress a t  the particle 
surface. When the particle is a drop, the appropriate boundary condition a t  the particle 
surface is continuity of stress and velocity rather than the no-slip condition which is 
appropriate for a solid particle. We expect, then, that  AP+ will scale with U t  only 
for ‘highly viscous’ drops. Data from table 3 show that this is the case. For the more 
viscous drops, system 2 and system 6 (v = 2.63 and 2.68, respectively), the measured 
values for AP+ scale (to within 20%) with U i .  Furthermore, when the lubrication 
approximation is written for a shear-thinning fluid using a power-law model, i t  can 
be shown that AP+ should vary with Un/tn+l), where n is the power-law index. Thus, 
for fluids with n < 1 ,  AP+ should be less sensitive to L’ than for a Newtonian fluid 
(n = 1). Indeed, the data for AP+ from table 3 for viscous drops suspended in 0.5 yo 
Separan (systems 2V and 5V) scale with U0.31 (to within 20 yo), where the exponent 
corresponds to n = 0-45 (see $2) .  

The lubrication model also provides a useful qualitative explanation of the fact, 
noted in $3, that AP+ becomes relatively independent of Ap/p for large drops, once 
Ap/po  exceeds about 0.02. From the point of view of lubrication theory, as the gap 
becomes smaller it takes smaller decreases in the gap width to yield a given incre- 
mental increase in the hydrodynamic lift. This reflects the fact that pressures in the 
lubrication layer scale with 1/h2. Thus, as A p / p o  is made larger, the variation in h 
which is required to balance drop buoyancy becomes smaller, and quantities such as 
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AP+, which are less sensitive to  h than the lubrication pressure, will tend to become 
insensitive to further increases in Aplp,. It may be noted, in this regard, that the 
lubrication analysis predicts that AP+ varies only as l l h .  Since it would take an 
infinite value of Ap, from the strict viewpoint of lubrication theory, to  reduce the 
gap width h to  zero, it is obvious that ah/a(Ap) must decrease as Ap increases. This is 
exactly what was observed. Further, since h will be smaller for a larger drop (other 
factors such as Ap being equal), larger drops should be expected to display asymptotic 
behaviour for lower values of Ap/po. The small drops, too, will become less sensitive 
to  Ap, but only a t  larger values of Aplp,, apparently outside the range of this study. 

We have already noted that drop deformation is essential to the generation of 
hydrodynamic lift via the lubrication mechanism. This would suggest that the results 
for AP+ and U / V  should show a dependence on the degree of deformation induced 
by the flow. Indeed, the theoretical analyses of Hyman & Skalak (19723) and Fitz- 
Gerald (1969) suggest that any factor which causes increased drop deformation will 
result in a simultaneous increase in the drop’s relative velocity and a decrease in 
the additional pressure drop. The data for both the Newtonian and viscoelastic 
systems studied here tend to confirm these implications of the available theories in 
the sense that an increase in the value of the deformation parameter r was found to 
lead to increased deformation, increased mobility and a decreased additional pressure 
drop. 

4.2. The inJEuence of viscoelasticity 

We have previously discussed certain consequences of viscoelasticity in the suspend- 
ing fluid, particularly in the framework of the lubrication ideas of $4.1. Here, we 
focus on other aspects of the influence of viscoelasticity, starting with the observations 
described in 9 3 of AP+ for viscoelastic suspending fluids. 

The primary distinction between the data for AP+Ro/,uoV in viscoelastic and 
Newtonian fluid systems is that the latter show increased values of AP+Ro/poV with 
increased values of u, while AP+R0/p,V in the viscoelastic case is virtually inde- 
pendent of the drop viscosity. In part, this latter result must be a consequence of the 
limited range of values for h covered by the experiments, for it was shown in Ho & 
Leal (1975) that AP+R,/,u, V for neutrally buoyant drops is dominated by the simple 
fluid-replacement mechanism for sufficiently large drops, even in viscoelastic systems, 
so that the sign of AP+ must eventually depend upon whether is smaller or larger 
than unity. This does not, of course, address the question as to why AP+Ro/,uoV 
should be independent of u for smaller values of h in the case of a viscoelastic sus- 
pending fluid. One possibility is that the behaviour of smaller drops is dominated by 
elastic properties of the suspending fluid rather than the shear viscosity which is used 
to  correlate the data for large drops. Now, the Deborah number for the flow (see $2)  
is approximately 

( U -  V)R 
2DhR, ’ De = 

where 2DhR0 is the ‘length’ of the deformed drop, U - V is the difference between 
the drop velocity and the suspending-fluid average velocity, and 0 is the fluid 
relaxation time. The present data for a viscoelastic suspending fluid show that, as h 
is increased, D increases and U tends toward 17 (i.e. U / V  decreases monotonically). 
Thus, in the range of h covered here, the effect of increasing h is to decrease the value 
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of De. This indicates that elastic effects should be more significant for the smaller 
values of A. This reasoning cannot hold, of course, as h --f 0, since in this limit the 
particle velocity tends toward the local velocity of the suspending fluid with h2 
dependence, and hence De --f 0. We conclude that elastic effects will be most signifi- 
cant for smaller but non-zero values of A, and it is possible that De becomes sufficiently 
large in this range for the onset of dominant elastic behaviour in the suspending 
fluid which could render 5 relatively unimportant. It should be noted, however, that 
the largest value of De estimated for the conditions of the present experiments is 
only 0.20, and it is usually held that strong elastic effects are not observed until De 
is increased to a value of 1 or 2 .  In  point of fact, the ‘onset’ value of De for a 
given experiment can only be verified by a systematic variation of the fluid response 
time, which was not done in the present study. The idea that dominant fluid elasticity 
may be responsible for the observed insensitivity to CT for smaller values of h must 
therefore be regarded as speculative. We may, however, mention that results from 
related experiments by Sigli & Coutanceau (1977) on a rigid sphere (0.25 < h < 0.75) 
sedimenting in a vertical cylindrical tube are a t  least qualitatively consistent with the 
suggestion of dominant elasticity for relatively small values of De. I n  that case, fluid 
elasticity was found to have a strong effect on the drag on the sphere for values of 
the Deborah number 6Vo/Ro, where V,, is the terminal velocity of the sphere, as low 
as 0.05. Sigli & Coutanceau speculated that the importance of elasticity in the sus- 
pending fluid was somehow enhanced by the presence of the tube wall. 

It is noteworthy that AP+Ro/poV (and AP+ itself) in the viscoelastic suspending 
fluid falls well below the Newtonian values, for approximately equal values of 5, h 
and Ap/po. The complete quantitative significance of this observation is difficult to 
assess, because the dimensionless values plotted in figure 3 for the viscoelastic fluids 
use the viscosity evaluated a t  the wall shear rate. Since this is the highest shear rate 
in the flow, the value of ,uo used in figure 3 is the minimum possible value for the 
particular undisturbed flow conditions, and thus AP+Ro/poV (as plotted) is the 
maximum value which could have been assigned to the viscoelastic data for a given 
AP+,  Ro and V .  Regardless of these details, however, the dimensionless extra pressure 
difference in figure 3 shows similar dependence on r for both suspending fluids. It thus 
appears that the data correlate without need for explicit consideration of the 
Deborah number, or any other viscoelastic parameter which depends, in principle, 
on 8. This seems to contradict our speculation that dP+ may be independent of 5 

for smaller drops owing to dominant elastic effects in the suspending fluid. However, 
the data of Sigli & Coutanceau (1977) suggest another possible explanation for our 
results. Their results show that the drag on a rigid sphere moving through a visco- 
elastic fluid in a circular tube (0.25 < h ,< 0.75) is considerably smaller than the drag 
on the same sphere in a Newtonian fluid, even after the viscosity is adjusted for the 
effects of shear-thinning. The decrease in the relative drag takes place completely 
as 8 Vo/Ro is increased from zero (Newtonian) to approximately 0.5 for h = 0.5. For 
values of BV,/Ro > 0.5, the relative drag is nearly independent of De and, in this 
regime of De, the drag shows the same qualitative dependence on Vo in both New- 
tonian and viscoelastic suspending fluids, even though the magnitude of the drag is 
smaller in the viscoelastic fluid. The implications of these results are that elastic 
effects are observed at  values of De considerably smaller than usually expected, 
and that these effects may become asymptotic in Be at relatively small values 
of De. 
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4.3. The effect of the undisturbed flow projile on drop mobility 

The data for the relative velocity of the drop show a maximum a t  intermediate h for 
some drops in a Newtonian suspending fluid. This suggests that drop mobility, like 
AP+, is determined by competitive effects. Existing theoretical calculations for 
small h suggest that there are two primary factors which determine the velocity of 
eccentric drops in a Newtonian fluid. First, there is the hydrodynamically induced 
slip velocity, which causes the drop to move a t  a velocity less than the undisturbed 
velocity of the surrounding fluid. Secondly, the drops move a t  a velocity that reflects 
the undisturbed fluid velocity at  the radial position occupied by their centre point, 
and the undisturbed velocity varies relative to the mean, as a function of radial 
position. The drops in the present study are not ‘small’ but, still, the velocities of the 
undisturbed path lines ‘occupied’ by the drop apparently remain significant for 
the determination of the drop velocity a t  intermediate values of A, and i t  is this fact 
which we believe accounts for the qualitative changes in U / V  as a function of h as 
the density difference, Aplp,,, is increased. 

When Ap/po is small, the gap between the drop and the tube wall decreases as the 
drop is made larger and, though the centre of the drop remains near the centre of the 
tube, it gradually moves outward toward the wall, thus occupying undisturbed 
streamlines with velocities lower, on average, than those closer to  the centre line. 
For example, Newtonian system 4 exhibits a monotonic decrease in h from 0.40 for 
h = 0.51 to 0.16 for A = 0.87, for V = 0.56 cm/s (see table l) ,  and U / V  is expected, 
as a consequence, also to decrease monotonically as it is, in fact, observed to do. On 
the other hand, higher-density drops show comparatively little effect of h on h. For 
Newtonian system 6, for example, h varies only between 0.12 and 0.14 over the 
entire range of drop sizes. Since the data show that gap width does not change with 
size, the centre of the smallest drop must be situated closer to the tube w-all than the 
centre of a larger drop in this case. Thus, as the size of the drop increases in a New- 
tonian suspending fluid, the centre of the drop ‘moves’ toward the tube centre line, 
and the drop occupies more of the region of greater undisturbed velocities. As a 
result, the drop is observed to move with a greater relative velocity in the Newtonian 
suspending fluid as h is increased for moderate values of A. However, the drop ex- 
hibits a maximum velocity around h = 0.7 for all Newtonian systems except system 4. 
For large drops with values of h > 0.7, the drop nearly fills the tube, and wall 
interactions, which tend to retard the motion of the drop, apparently become more 
significant, as in the neutrally buoyant case. Thus, U I V  decreases with further in- 
crease in h until h + 1.  Then, U / V  remains constant with increasing h since further 
increases in volume lead to increases in drop length rather than changes in its cross- 
section (cf. Ho & Leal 1975). 

I n  contrast to the Newtonian case, U / V  is a monotonically decreasing function of 
A for all of the viscoelastic suspending fluid systems which we studied. Once again, 
this result appears to be correlated with the relationship between h and the gap 
width h. We have already noted that h is significantly larger for the viscoelastic 
suspending fluids than for the Newtonian fluids. This difference is greater for smaller 
drops and lower flow rates. I n  addition, the viscoelastic systems show a monotonic 
decrease in the gap width as the size of the drop increases for all flow rates. Thus, the 
behaviour for the viscoelastic systems is qualitatively similar to the Newtonian 
system 4, the least non-neutrally buoyant case in the present study. 
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The suggestion that drop mobility depends, a t  least in part, on the undisturbed 
pathlines sampled by the drop also helps to explain the results of figure 6, which 
show that U / V  is often larger for small drops in the viscoelastic systems compared 
to  the Newtonian cases, but never larger for large drops. If a power-law model with 
index n = 0.45 (see $ 2 )  is used to describe the suspending fluid, the undisturbed 
velocity profile is considerably blunted near the centre of the tube. The maximum 
velocity on the centre-line is less than the Newtonian case, only 1.6V. For a fixed- 
volume flow rate, the Newtonian fluid exhibits larger velocities than the viscoelastic 
fluid for dimensionless distances from the tube centre line, /3, up to  p = 0-6. From 
/3 = 0.6 to p = 1.0 (the tube wall), on the other hand, the power-law fluid exhibits 
the greater velocities. Since the relative velocity of the drop depends in part on the 
velocity of the undisturbed streamlines occupied by the drop, i t  follows that small, 
highly eccentric drops which occupy the region adjacent to  the wall should move 
more rapidly in a power-law fluid than in a Newtonian fluid (because the shear- 
thinning fluid itself is moving faster). Thus, i t  is clear that  the mobility of small non- 
neutrally buoyant drops is favoured for a shear-thinning fluid, a t  least insofar as the 
undisturbed profiles are concerned. The data from the present experiments show that 
increased values of Ap/po  and decreased values of V (for A p / p o  + 0) alone or to- 
gether, cause the drop to assume a more eccentric position in the tube. Figure 6 shows 
that U /  V (Newtonian) - U /  V (viscoelastic) is more negative for smaller values of V 
and for larger values of Ap/po. This is in accord with the simple mechanism proposed 
above. As a small drop is made larger, however, more of the centre of the tube is 
occupied by the drop, i.e. p decreases, and the drop becomes less eccentric. The 
undisturbed velocity in this region is not only greater than that near the tube wall, 
but is also rclatively greater for the Newtonian suspending fluid than for the visco- 
elastic fluid. Thus, as h is made larger, i t  may be expected that the mobility of drops 
will ultimately be favoured for the Newtonian suspending fluid. 

5. Comparison with theory 
Our discussion of the experimental results has focused until now on a description 

of the qualitative effects of the various independent variables on the measured 
quantities. Now, a comparison between the data for Newtonian fluid systems and 
the available theoretical calculations for A P  and T /  in a Newtonian fluid will, i t  is 
hoped, provide additional insight into the various physical phenomena involved and 
test the range of applicability of the analyses. It should be remembered, in making 
such a comparison, that the analytical theories leading to ( 1 )  and ( 2 )  are restricted 
to  small drops, h < 1 ,  which have spherical shapes and t o  a Newtonian suspending 
fluid. Furthermore, there is no consideration of wall effects, except insofar as the 
bounding wall gives rise to the undisturbed Poiseuille flow. 

No theory presently exists for predicting the position of the drop relative to the 
wall, i.e. /j' which appears in (1) and ( 2 ) .  Consequently, ( 1 )  is not capable of a priori 
predictions for the qualitative trends displayed by the data - the variation of U /  V 
with V ,  for example. However, p can be measured from photographs and then used in 
( 1 )  to evaluate L'/V for quantitative comparison with the data. 

Figure 10 shows U /  V as a function of h for two systems selected to illustrate the 
effect of cr. Equation ( I ) ,  using the appropriate measured value for for each case, 
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FIGURE 10. Data for relative drop velocity as a function of dimensionless drop size. 0 ,  systems 2 
and 5 (Newtonian). 0, predicted values from ( 1 ) .  
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Coefficients of (2)  : 
-7 

Viscosity ratio Concentric ( A 5 )  term Eccentric ( /3*A3)  term 

0.30 - 2.82 28.72 
0.35 - 1.94 29.63 
0.77 3.09 35.25 
2.63 10.22 44.52 
2.68 10.30 44.64 

TABLE 4. Coefficients of equation (2)  

is compared to the data. Qualitative agreement between the two is good, inasmuch as 
a maximum value for Wl V a t  intermediate h is predicted only for the systems which 
actually show one. Otherwise, (1) predicts a monotonic decrease in U / V  as h is made 
larger. It may be noted that the maximum in U /  V actually results from a minimum 
in the experimentally observed values of ,h’ as a function of A .  Furthermore, quanti- 
tative comparison between the data and (1) shows that the effect of 5 on U f V is not 
as significant as indicated by the slip-velocity term. 

The only means by which (1) predicts any variation in U /  V with V is through the 
measured value of /3. Figure 10 shows that the variation in U / V  with V is not pre- 
dicted adequately by ( 1 ) .  An effect not taken into account in the derivation of (1) is 
the deformed shape of the drop. It has already been suggested that deformation is 
partly responsible for the observed increase in U / V  with V ,  but the theory which 
leads to (1) predicts that the deformation of the drop should be unimportant if 

The value of the left-hand side of the inequality never exceeds 0.06 for the range of 
material parameters used in the present study, indicating that drop deformation 
should be insignificant. Nevertheless, the photographs show that the drop undergoes 
appreciable deformation, and the data show a dependence on the degree of deforma- 
tion, as already outlined in 5 3. A mechanism that could induce increased deformation 
which is not included in the theoretical analysis is the hydrodynamic interaction be- 
tween the drop and the wall. 

Equation ( 2 )  for the additional pressure difference contains one term for the con- 
centric contribution and another for the effect of non-neutral buoyancy. The neutrally 
buoyant term depends on h5 while the non-neutrally buoyant one contains P2h3. 
Table 4 shows the magnitude of these terms, relative to each other, a t  the values of 
v used in the present experiment. 

The predicted contribution due to  drop eccentricity is always positive and only 
weakly dependent on the viscosity of the drop. The concentric term, which includes 
the contribution due to the replacement of fluid, can be positive or negative, depend- 
ing on the viscosity ratio, but is always considerably smaller in magnitude than the 
eccentric term. The effect of drop eccentricity is always t o  increase AP+ over the 
neutrally buoyant case. The value of r where AP+ = 0 is predicted to depend on 
B2/h2, decreasing from v = 0.48 for P2/h2 = 0 to 5 = 0 for P2/h2 = 0.5. 

Once again, /3 must be evaluated from photographs of the drops for quantitative 
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2 1 System 5 

- - 
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x 
FIGURE 11. Data for dimensionless pressure drop as a function of drop size. 0,  systems 2 and 5 
(Newtonian). 0, predicted values from (2).  Note that the predicted value does not vary with 
flow rate. 

comparison of the theoretical equation (2) with the data. The dependence of AP+ 
on h for selected Newtonian systems is shown in figure 11. For viscous drops, agree- 
ment between data and theory is good, with the values for AP+ from the data ex- 
ceeding the value given by (2) by 50 yo a t  most. The deviation is smaller for small 
values of A, which is to be expected since the theory is strictly valid only in the 
small-h limit. 

Agreement between data and theory is not as good for low-viscosity drops because 
the eccentricity term, which unrealistically neglects the effect of the wall, is relatively 
more important for low values of u than for highly viscous drops, as indicated in 
table 4. As a result, the value of AP+ calculated from (2) even has the incorrect sign 
over the entire range of h for system 4 (g = 0-30). The deviation between theory and 
experiment increases with A ,  a consequence (presumably) of an increase in the 
magnitude of the neglected wall interaction. On the other hand, in the small-h 
region, quantitative agreement is still satisfactory, even for low-viscosity drops. 

Dependence of AP+Ro/poV on V enters only through the effect of V on p, just as 
in equation (1 ) for U /  V.  A comparison shows the predicted variation of AP'Ro/poV 
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with V is much less than indicated by the data, although ( 2 )  at  least correctly pre- 
dicts that the qualitative effect of an increase in V is a lower value for AP+. 

Bungay & Brenner ( 1 9 7 3 4  have shown that, if wall effects are taken into account, 
a higher value of AP+ is obtained for given values of h and A p ,  at  least for rigid 
particles. They calculated AP+ for’a small, rigid sphere in the presence of the tubewall, 
using the method of reflections combined with the reciprocal theorem. The result for 
AP+Ro/,uoV shows the coefficient of the pzA3 term to be 226. Now, as the authors point 
out, if (2) is used in the limits p -f 1, (T+OO, the coefficient of the eccentricity O(h3) 
term is only l$c, less than one-fourth of the value if wall interaction is included. The 
dat’a for AP+ for drops in the present experiment generally lie above the value from 
(2)) but below the near-wall prediction for rigid particles. No theoretical result for 
wall effects on fluid drops is available a t  the present time. 

6. Conclusions 
Data from a study of the creeping motion of non-neutrally buoyant drops in a 

horizontal tube have been presented. The measured quantities were the additional 
pressure difference, the velocity of the drop, the shape, and the gap width between the 
drop and the wall. These were measured as functions of the material and flow para- 
meters, including drop viscosity, drop density, the size of the drop, the flow rate, and 
the suspending-fluid rheology. 

A major purpose of the study was to identify the effects of variations in the lateral 
position of the drop, and this was accomplished through variations in the density of 
the drop fluid. Even small density differences (Ap/po = 0.02) produced qualitative 
differences in the dependence of the measured quantities on some variables. For 
example, eccent,rically located particles showed a maximum mobility for an inter- 
mediate drop size which is not observed for concentric particles. 

The effect of the eccentric position of the drop was to increase the pressure difference 
over the value for the concentric case. A simultaneous decrease in the relative velocity 
of the drop was also noted. The dependence of AP+ and U /  V on Ap/po  for large drops 
decreased as Ap/po was made larger. Thus, i t  appears that although small density 
differences can make significant changes in the measured values for the quantities 
studied here, large density differences do not produce correspondingly large devia- 
tions from the neutrally buoyant results. Indeed, asymptotic behaviour will be 
attained at  lower values of Ap/po as the size of the drop is made larger. The results 
of this study seem to indicate that small density differences should definitely be 
considered in the motion of particles in porous-media flow or other related problems, 
since most practical conditions will probably involve non-neutrally buoyant suspen- 
sions. However, above minimal values for Ap/po, further non-neutral buoyancy can 
safely be neglected. 

The viscoelasticity of the suspending fluid was an important factor in the deter- 
mination of the shape of the drops as well as the equilibrium lateral position assumed 
by the drops during flow. There were corresponding changes in AP+ and U / V  from 
the Newtonian case. Since the combination of increased viscosity and normal-stress 
effects in the viscoelastic fluid provides a mechanism that tends to ‘move’ particles 
further away from the wall, the effects of increased density differences were felt a t  
larger values of Ap/po than for the corresponding Newtonian case. Thus, the ‘asymp- 
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totic regime' mentioned above will apparently occur a t  larger values of Ap fpo for 
viscoelastic suspending fluids. 

For the Newtonian systems, qualitative agreement was generally found between 
the data and available small-h theoretical expressions that take into account the 
eccentric position of the drop. For large values of A, the effect of drop-fluid viscosity 
is crucial to  t'he value of AP+, and, therefore, theoretical derivations for solid particles 
based on lubrication theory are only of use in estimating the additional pressure 
difference for very viscous drops. However, the mobility of the drop is much less de- 
pendent on the drop viscosity and it was shown that lubrication theory can be used 
to  correlate the mobility data. Furthermore, it was found that if a power-law model 
was used to  account for the shear-thinning of the viscoelastic suspending fluid, data 
for AP+ for large viscous drops could be correlated with results from lubrication 
theory. 
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